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Mechanics of Wedge-Shaped Fault Blocks 
1. An Elastic Solution for Compressional Wedges 

AN YIN 

Department of Earth and Space Sciences, University of California, Los Angdes 

An elastic model is developed to investigate the initiation of normal and thrust faults in thrust 
wedges. The model assumes frictional sliding along the base and a linear variation of shear and 
normal tractions with depth along the rear of the thrust wedge. Using this model, the roles of 
basal friction, pore fluid pressure, and wedge configuration in controlling the mechanics of thrust 
wedges were evaluated. The model predicts coeval development of normal and thrust faults in 
the same thrust wedge and a listric shape for both thrust and normal faults. In particular, lower 
friction favors dominantly horizontal compression in a thrust wedge, whereas higher friction can 
produce dominantly horizontal extension. Wedges bounded by steep thrusts (> 45 ø) are more 
likely to experience extension regardless of their sizes and the boundary conditions applied. For 
wedges bounded by shallow-dipping thrusts (< 15 ø) and under the same boundary conditions, 
shorter wedges are more dominated by compression than longer wedges. Using this model, the 
length of a Hubbert-Rubey titrust toe (deftned as the length of the unfractured, frontal portion of 
a thrust wedge) is calculated. With the same boundary conditions and mechanical properties, a 
thinner wedge, in general, favors a longer Hubbert-Rubey toe than a thicker wedge. This simple 
model is applied to explain the initiation of the short-lived Miocene normal fault system in the 
Higher Himalaya as a consequence of a rapid release of pore fluid pressure along the Main Central 
Thrust during the formation of two-mica leucogranites in the hanging wall. It also simulates the 
occurrence of normal faults associated with the E1 Asnam thrust-type earthquake. 

INTRODUCTION 

In the last three decades, considerable effort has been 
devoted to the understanding of thrust-wedge mechanics 
[Price, 1973a; Elliott, 1976; Chapple, 1978; Davis et 
al., 1983; Stockreal, 1983; Emerman and Turcott, 1983; 
Dahlen, 1984; Platt, 1986; Yin, 1986, 1988; Fletcher, 
1989; Liu and Ranalli, 1992]. These studies provide many 
insights into the relationships among stress distribution, 
boundary conditions, wedge geometry, and wedge theology. 
However, two important features commonly associated with 
the development of thrust wedges remain little investigated. 
First, thrusts and normal faults commonly develop in dif- 
ferent parts of the same thrust/orogenic wedge at the same 
time [e.g., Platt, 1986; Dewey, 1988]. For example, the 
north dipping normal fault system in the Higher Himalaya 
was developed in an orogenic wedge during the collision of 
India with Asia (Figure 1) [Burg and Chen, 1984; Burch- 
fiel and Royden, 1985; Burchfiel etak, 1992; Harrison 
et al., 1992]. On a smaller scale, the structures developed 
during the 1980 E1 Asham thrust-type earthquake in Alge- 
ria show coeval development of normal faults and thrusts 
in the same thrust wedge (Figure 2) [Yielding et al., 1981; 
Philip and Meghraoui, 1983; Ouyed et al., 1983; King and 
Yielding, 1984; Avouac el al., 1992]. Although Plall [1986] 
inferred that high topographic slopes would favor extension 
in a thrust wedge, which in turn would lead to reduction of 
the slope to regain the stress state of horizontal compres- 
sion, he provided neither analytical solutions nor numerical 
calculations. Thus it is uncertain whether Platt's suggestion 
applies to the whole thrust wedge. Second, a listtic geome- 
try has been observed in many thrust belts (Figure 3) [Bally 
et al., 1966; it Price, 1981]. However, this is not predicted 

by the popular noncohesive critical Coulomb wedge model 
[Dahlen, 1984]. 

In order to understand the mechanics of listtic thrusts and 

the coeval development of thrust and normal faults in the 
same orogenic wedge, the stress distribution in an elastic 
wedge was investigated. The basis for the assumed elastic 
constitutive relation between stress and strain is that the 

elastic deformation, though small, is important for the initi- 
ation of Coulomb-type fractures [Jaeger and Cook, 1979]. 
Coulomb-type fracturing, in turn, has long been considered 
to be the mechanism for initiation of natural faults [e.g., 
Anderson, 1942]. Another reason to assume elasticity is 
to compare the difference in predicted stress distributions 
among elastic, noncohesive Coulomb and plastic wedges that 
have the same boundary conditions. In doing so, the choice 
of constitutive relations between stress and strain for thrust 

wedge models can be assessed. Liu and Ranalli [1992] re- 
cently investigated the mechanics of elastic wedges, but be- 
cause they did not specify the basal boundary condition (i.e., 
the shear and normal tractions on the basal thrust) of the 
wedge considered, their solution is not unique. 

The purpose of this paper is to investigate the mechanical 
conditions for the intiation of both normal and/or thrust 
faults in thrust wedges. It is the first of two papers in- 
vestigating the mechanics of wedge-shaped, elastic fault 
blocks. Here we are only concerned with compressional 
wedges bounded by thrusts at their bases. In contrast, if 
wedge-shaped fault blocks are bounded by normal faults at 
their bases, they are extensional wedges. This definition is 
similar to that of Xiao et al. [1991] for compressional and 
extensional Coulomb wedges. 

THEORY 
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Stress Distribution in Thrust Wedges 

The geometry of an elastic-brittle thrust wedge and the 
framework of reference used in the calculations are shown 

in Figure 4, where c• is the surface slope, fl is the dip angle 
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Fig. 1. Geologic cross section through the Himalaya, simplified from Gansser [1964] and Lyon-Caen and Molnar 
[1983]. STDS, south Tibetan detachment system of BurchfieI et aI. [1992], is a north dipping normal fault system 
in the Higher (Greater) Himalaya that was coeval with the Main Central Thrust below. 1, Tertiary and Quaternary 
sedimentary rocks; 2, Mesozoic Indus fiysch; 3, Paleozoic sedimentary rocks of Greater Himalaya; 4, Paleozoic 
sedimentary rocks of Lesser Himalaya; 5, upper Precambrian and lower Paleozoic sedimentary rocks; 6, Precambrian 
basement; 7, Himalayan leucogranites. 
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Fig. 2. Surface structures developed during the 1080 E1 Asham (Algeria) thrust-type earthquake [after Kin# and 
Yielding, 1984]. Cross section A shows the possible geometry of the main thrust as defined by the distribution of 
aftershocks (see Ouyed et al. [1983] for details). 

r,i•i • 3. S'impiified geologic mar of southern"Canadikn Rockies fold-and-thrust belt [after. Bally et al., 1966]. Note 
that listtic thrusts are common features in the cross section. 
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of the basal thrust, 0 -- c• + •, and x0 is the length of the 
,wedge' Note that the x axis is parallel to the surface and 
'points in the upslope direction. The sign convention follows 
that of elasticity, that is, tensile stress is positive. 

The stress equilibrium equations of a continuum in the z 
and y directions for a plane stress condition are 

Oz + O• +X-O . (1) 

+ +v-o . 

ß wh'ere'q) is the Airy stress function [e.g., Hafner, 1951; 
Fung, 1965] 'and is related to stress components by 

. . 02(1, 
.. ' ,'. er-• - -- - X,x (12)' 

,.. r. OY 2 

er--yy -- Ox 2 - Y,y (13) 

a•y = OxOy' (14) 
ß .. •.- '. The I•;'undary conditions are a stress-free upper surface 

where.erz•,.•r.•/y,.and eriy are normal an•shears•resscompo-.. and a linear variation of normal and shear tractions with 
nents ira the x and y directruns and X and Y are body forces 'depth Mong the rear of the wedge, i.e., 

-, 

dhe to gravity' ih the•'x and y directions. X - -Psg sin a,-. . 
¾ - ,Os g c6s c•, ,Os is the average density of the rock compos- 
ing th.e thrust wedge, and g is the acceleration of gravity. 
the thrust wedge may not be dry, pore fluid pressures may 
exist within the rocks, in which case we consider the effect of 
buoyancy induced by pore fluid [Hubbert and Rubey, 1959]• 

X• - Apwgsin a ß .. (3) 

Yb -- -'Apwg cos a .' (4). 
ß 

. , 

ß 

where Pw is the d•nsity of water and A is th& iatib 'of th'e 
pore fluid and lithostatic pressures and is known as the pore 
fluid pressure ratio [Hubert and Rubey, 1959]. 'The pore. 
fluid pressure is defined as 

Vyy(x, O) - et•,y(x, O) - 0 (15a)j 

V•(Xo, y)- A + By (15b) 

' o'•,y(x;,y)- Cy .,- ... (15c) 
o. 

where. A, .B, and C are prescribed constants. The bound- 
ary conditions along the rear of the wedge are based on the 
'result. of in situ stress measurements [McGarr and Gay, 
J978], which suggests that vertical and horizontal normal 
stresses are generally a linear function of depth. The bound-' 
cry condition along the base of the wedge is assumed to 
follow Amonton's law [Jaeger and Cook, 1979] 

P! -.-Ap, gh ... (5).' . rb(x,'y - x tan 0) - -y•(1 - A•)V•(x, y - x tan 0) . 

. (16a) 
wher• h is the deptli from the surface measured vertically where/z• is the coefficient of friction along the fault plane, 
dowhward. ' 

ß •b is the normal stress component across the basal thrust 
.We now rewrite (1) and (2) by considering the effect of plane r, is the shear stress component along the basal thrust 

po•e fluid in rock• and obtain plane, and A• is the pore fluid pressure ratio along the fault 
. • iplane. •b and rb can be related to stress components ' _ ' ' ' '•-t- -k'Xe 0 (6)' er'-yy, and erxy along the basal plane by 

-. Oz Oy 

'Xi - -(1- A)p,g sin a- -' p,g sina (8). 

. Y, '- (1 - A)p,g cos a - p•g cos a (9) 

where 1'-" sin 0 and m- cos 0. 
I 'have •)btained a solution for the above problem by as- 

suming that the Airy stress function has the form . 

Pe -- (1-- •)p, is the effective density-and (r'-•x and •9•: 
are effective s't•es•s' in' the x 'affd y directi6ns. It .(]'an be 
seen from (8) and (0) that the role of the'pore fluid pressure 
represente.d by A is'-t'o re•luce the.magnitude of the beady 
force. This is the buoya.ncy effect discussed by Hubbert and 
Rubey [1959]. 

A harmonic equation can be derived by using both Itooke's 
law and'the strain •compatibility'condition: . ß 

V'•(a• 4- •yy)-- O. i10) 
. 

'For the case'of constant body fordb's in t'fie X and y ai•- 
tions, (6), (7), and (10) can be combined into the biharmonic 
equation ' 

.... ;"Ci 3 1 

Using (i5 i to (14), this gives 

1 ' 1 2 1 ' [kaxy + 6 6 k2x y + 

(17) 

., 

' .a• --":l•z + k4y + k•zy + ks + pegzsin a 
ß 

•yy 

(18).• 

'•' kfx •'k•y + k•xy + k?- p, gy cos a (19) 

ß 

.. 

., , 
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where kl to ks are constants determined by the boundary 
conditions. Equation (15) requires that kl -- k2 - k6 - 
k? - 0. The remaining constants k3, k4, ks, and ks are de- 
termined by the following constraints. First, the magnitude 
of the stress at the toe of the thrust wedge is assumed to be 
known, giving 

0)- ks - a0. (21) 

This condition is equivalent to a uniform normal stress 
in the x direction applied throughout the thrust wedge. As 
the upper limit of the magnitude of deviatoric stress in the 
crust falls between 20 and 100 MPa, the value of er 0 can be 
as high as 200 MPa. Constant k5 represents the gradient 
of O•xx/Oy in the x direction. As it varies little in a large 
region shown by the result of in situ stress measurements 
[McGarr and Gay, 1978], k5 is assumed to be zero. Finally, 
k3 can be determined by (16) as a function of k4 and ks 

--k4a12 + bl 
•3 -- (22) 

all 

where 

air -- x0[sin 20 -- tan 0 sin 2 0 + Pb(1 - Ab) sin 2 0] (23) 

ax2 = x0sin 2 011 + tan 0pb(1 -- 

bl = pegxo sin 0[(sin a cos 0 + cos a sin 0) 

+po(1 -- l)(sin c• sin 0 -- cos c• cos 

+kssinO[cosO + pb(1- A) sin 0] 

and x0 is the length of the thrust wedge. 
We can now write the stress distribution in the wedge as 

(24) 

(25) 

• -- k3x + k4y + ks + pegx sin c• (26) 

•'yy -- -pegy cos a (27) 

erxy -- --k3y (28) 

Using the boundary conditions along the rear of the wedge 
represented by (15b) and (15c) and comparing them with 
(26) and (28), we obtain the following relations 

•rr(xo, y) -- A + By - k3xo + k4y + ks + pegxo sin c• 
(•) 

O'xy(XO,y) -Cy- -k3y (30) 

where A - k3xo+p•gxosin c•+ks, B - k4, and C - -k3. 
By observing that k• is a function of k4 in (22), B and 
C are related. Thus, prescribing the value of k4 and ks 
is equivMent to knowing the boundary conditions (i.e., the 
v•ue of A and B) at the rear of the wedge. Parameter 
B - k4 represents the gradient of Wxx in the y direction. 

Equation (16a) only provides the constraint on the shear 
traction on the basal surface. As k3, k4, and ks are known, 
the normal traction Mong this surface can be derived from 

Y•(x, y - x tan O) - •2(•3• + •4 • tan 0 + ks + p•gx sin a) 

+m•(-pegxtanOcosa)+ 21m(-k3xtanO). (31) 

Thus equations (15), (16), (29), (30), and (31) provide a 
complete set of boundary conditions around a thrust wedge. 

Equation (26) shows the contribution of surface slope c• 
to creating tensile stress in the x direction by the term 
pegxsin c• -- (1 -- .•)p, gxsinc•. Because the upper limit 
of regional surface slope of most orogenic belts is less than 
3.5 ø [Davis eta/., 1983], the range of variation caused by 
sin c• term is only between 0.0 and 0.061. In contrast, the 
variation of the pore fluid pressure ratio A in the wedge is 
between 0.0 and 1.0, much greater than that of the surface 
slope term. This simple analysis indicates that surface slope 
is a much less important factor in producing tensile stress 
than pore fluid pressure, although its presence may lead to 
generating tensfie stress. 

Using (26) to (28), the principal stress directions and the 
maximum shear stress (i.e., deviatoric stress) can be calcu- 
lated by 

1 •b - • tan-l(_ _ ) (32) O'xx -- 

and 

respectively, where ;b is the angle between the maximum 
tensile stress • and the x axis. Using (32) and (33) and ap- 
plying the Coulomb fracture criterion with the assumption 
that an angle of internal friction q• is 30 ø, the trajectories of 
predicted fault patterns and distribution of the maximum 
shear stress can be plotted. 

Lengths of Hubbert-Rubey Thrust Toes 

Commonly, a significant portion of a thrust sheet is nei- 
ther faulted nor folded (e.g., see cross sections of Bally et 
al. [1966]). This phenomenon was first noted by Reade 
[1908] and later became the famous mechanical paradox for 
far-traveled thrust blocks [$moluchowski, 1909]. The sig- 
nificant lengths of unfractured thrust blocks and the limited 
strength of rocks require that the basal friction of the thrust 
blocks be much lower than that determined from experimen- 
tal studies. The problem led to intense debate and various 
theories (see summary by $uppe [1985]). De Bremaecker 
[1987] and Price [•973b, •988] questioned the validity of the 
mechanical paradox. They believed that the calculations 
of the maximum length of thrust sheet [e.g., Hubbert and 
Rubey, 1959] based on force balance between friction along 
the thrust and horizontal push from behind implies an as- 
sumption that frictional slip occurs simultaneously over the 
entire thrust surface. They further pointed out that such 
thrust motion is inconsistent with the dislocation model de- 

termined from earthquake seismology. Their concerns, how- 
ever, may not be justified, because the dislocation model 
is purely a kinematic description for rupture of a fault sur- 
face during earthquake events. The model itself puts no 
constraints on the mechanical conditions (i.e., stress mag- 
nitudes and mechanical properties) along the fault surface 
[Aki and Richards, 1980, pp. 799-800]. It does not imply 
that an unruptured part of the fault was not at the verge 
of frictional failure. Second, the observation of limited rup- 
ture areas during earthquake faulting does not preclude the 
possibility that a large thrust block can move aseismically, 
i.e., creep at a slow rate. Because seismicity over very short 
time intervals (several tens of years) may cover the entire 
thrust fault surface, which is the case in the Himalaya [See- 
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bet et al., 1981; Ni and Barazangi, 1984], an active thrust 
surface may be everywhere at the verge of frictional failure, 
so that slip can occur wherever the shear traction on the 
thrust exceeds the frictional strength. In the following, I as- 
sume that the basal thrust is at the verge of frictional failure 
everywhere. Thus the result of stress distribution in elastic 
wedges discussed above can be used in the calculations. 

The length of a Hubbert-Rubey thrust toe, L, is de- 
fined by the horizontal distance between the point (0, 0) 
at the wedge tip and the point [L/cos c•, tanO(L/cos c0] 
at the base of the thrust wedge. At the point ILl cos c•, 
tan O(L/cosc•)], the state of stress satisfies the Coulomb 
fracture criterion (Figure 4). This statement can be ex- 
pressed as [Jaeger and Cook, 1979] 

•l[L/cos c•, tan 8(L/cos c0] - Co 

(34) 

where C0 and q are constants related to the cohesive 
strength, S0, and the coefficient of internal friction, p•, by 

Co - 2S0[(p• + 1) •/2 + (35) 

q --[(p• + 1) •/2 + p4,] 2 (36) 

and •1 and •3 are the greatest and least tensile principal 
effective stresses. They can be calculated by 

(37) 

where •xz, (r-'yy, and •rxy may be obtained by using (22) to 
(24). ks -- 0 is assumed, because we are interested in the 
length of the toe as a function of both the configuration and 
the strength of thrust wedges. In doing so, we obtain a self- 
similar solution of the stress components •xx, •yy, and crxy; 
that is,, constants k3 and k4 in (26), (27), and (28) can be 
obtained without prescribing the length of the wedge. Thus, 

the length of the Hubbert-Rubey toe can be calculated by 
inserting (35), (36), and (37)into (34) 

L - 2Col(cos c•[(• + •yy)(1 - q) 

+(1 + q) •/41-(•xx - •yy)• + •r•yl} (38) 
This relation indicates that the length of the Hubbert-Rubey 
toe is zero for a noncohesive elastic Coulomb wedge. 

RESULTS 

Stress Distribution 

Using the model derived above, the roles of boundary con- 
ditions and wedge configuration in controlling the stress dis- 
tribution in a thrust wedge can be evaluated. The coeffi- 
cients of basal friction and internal friction are assumed to 

be 0.7 and tan 30 ø, respectively, for all cases calculated be- 
low. Thus pore fluid ratios within the wedge (,•) and along 
the base of the thrust wedge (,•b) are considered for the 
basal boundary condition. Figure 5a shows the predicted 
fault pattern in the region where the magnitude of maxi- 
mum shear stress (i.e., deviatoric stress) is greater than 50 
MPa. I chose x0 -- 100 km, dip angle fl -- 10 ø, surface 
slope c• -- 3.50 , k4 - -1.5peg, and ks - -100 MPa. 
This model shows that normal faults are favored in the up- 
per portion of the wedge, whereas thrusts are favored in the 
lower part of the wedge. When ,•b decreases from 0.9 to 0.4, 
normal faults prevail in the entire wedge (Figure 5b). By 
lowering ,• from 0.4 to 0.0 and by maintaining ,•b -- 0.4, 
we find that the fault pattern is little changed. However, 
if pore fluid pressure in the wedge, ,•, increases from 0.4 in 
Figure 5c to 0.8 in Figure 5d, thrusts in the lower part of 
the wedge are created, whereas normal faults remain in the 
upper part of the wedge. 

The stress distribution in an elastic wedge is also sensi- 
tive to k4, the gradient of •x in the y directio n. Figure 
6a shows the predicted fault pattern in the .region where 
the magnitude of deviatoric stress is greater than 10 MPa 
for k4 - -0.5peg with all other parameters the same as 

L 
:gO 

(o, o) 

, 

Fig. 4. Geometry of a triangular wedge, framework of reference, and sign convention used in this study. c• is the 
surface slope, fl is the dip of the basal thrust, 0 -- c• 4- fl, and x0 is the length of the wedge, 7' b and o¾ are shear and 
normal tractions along the basal thrust, and o'x•v O'yy, and o'xy (all have positive signs), are stress components in 
the x and y directions. The length of a Hubbert-Rubey toe, L, is defined by the horizontal distance between point 
[L/cos c•, tan •(L/cos c0] and point (0, 0). 
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Fig. 5 Potential fault pattern in the region where the magnitude of deviatoric stress is greater than 50 MPa, cr -- 3.50,/• __ 100, k4 = -1.Speg, ks -- --100 MPa, and x0 ---- 100 kin. The dash-dot line is the contour line of 7'max -- 50 MPa: (a) A -- 0.4, A• = 0.9, (b) A - 0.4, Aa = 0.4,(c) A = 0.0, A• = 0.4, (d) A - 0.8, A• - 0.4. 
those used in Figure 5a. The thrust wedge under this con- patterns in Figures 5a and 7a are quite similar. However, dition can be divided into two parts: toward the toe, thrust faults are dominant, whereas toward the rear, normal faults are dominant. If the value k 4 is further reduced, the upper part of the wedge is occupied by thrust faults, whereas the basal part of the wedge is occupied by normal faults. This fault pattern is similar to what was observed in the clas- sic Lewis thrust system, western Montana []"in and Ii'elty, 1991]. The magnitude of deviatoric stress in nearly the en- tire wedge is less than 50 MPa. Because of this, the fault pattern predicted in this case can occur only if the wedge has a low fracture strength. 
Variation of k s can also affect the state of stress in thrust wedges. Figure 7a shows the potential fault pattern in the region where the magnitude of deviatoric stress is greater than 50 MPa. I chose k s _-- 0 with all other parameters the same as those used in Figure 5a. We can see that the fault 

if we let k s = -1000 MPa, and kll other parameters are the same as those used in Figure 5a, the normal faults in the upper part of Figure 5a are completely removed (Figure 7b). Note that k s _- _1000 MPa is equivalent to assuming a deviatoric stress of 500 MPa, which is unrealistically high for the maximum deviatoric stress in the crust. This implies that for a long thrust wedge (in this case, 100 kin), with the boundary conditions the same as those used in Figure 5a, normal faults are expected. However, if we let all the conditions used in Figure 5a be the same except assigning the length of the wedge x0 = 10 kin, we find that the entire wedge is dominated by thrusts (Figure 8). In this case, the magnitude of deviatoric stress in the entire wedge except the toe is less than 50 MPa. Concentration of deformation in the thrust toe is expected. 

It has been suggested by numerous investigators [e.g., 
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Fig. 6. Potential fault pattern where the magnitude of deviatoric stress is greater than 10 MPa, c• -- 3.5 ø,/• -- 10 ø, 
/• -- 0.4, /•b -- 0.9, ks - -100 MPa, and x0 -- 100 km. The dash-dotted line is the contour line of 'r'max -- 10 
Mra: (a) k4 ----0.5peg, (b) k4- 0.0. 
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Fig. 7. Potential fault pattern in the region where the magnitude of deviatoric stress is greater than 50 MPa, 
c• -- 3.5 ø,/• -- 10 ø, A -- 0.4, Ab -- 0.9, k4 - -1.5peg, and x0 -- 100 km. The dash-dotted line is the contour line 
of rma•r -- 50 MPa: (a) ks = 0 MPa, (b) ks - -1000 MPa. 
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Fig. $. Potential fault pattern for c• -- 3.5 ø, • - 10 ø, A - 0.4, •b -- 0.9, k4 - -1.5peg, ks = -100 MPa, and 
x0 -- 10 km. Solid lines represent potential faults in the area where the magnitude of deviatoric stress is greater 
than 50 MPa, whereas dashed lines represent faults in the area where the magnitude of deviatoric stress is less than 
50 MPa. The dash-dotted line is the contour line of 7'mR x -- 50 MPa. 
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Platt, 1986] that the topographic slope is an important fac- 
tor in determining whether the state of stress in a wedge 
is extensional or compressional. In particular, steeper slope 
should favor extension. Figure 9a shows that with all pa- 
rameters the same as those in Figure 5a, except that the 
surface slope • is now 0 ø, normal faults can still exist in 
the top part of the wedge. Faults are shown only in the 
region where the magnitude of deviatoric stress is greater 
than 50 MPa. This result indicates that the surface slope 
itself is not the only cause of horizontal extension. On the 
other hand, if the surface slope increases to • -- 15 ø, which 
is unrealistic, normal faults prevail in the wedge above the 
horizonal (Figure 9b). If we keep all the parameters the 
same as those used in Figure 9a but increase the dip angle 
from /• -- 100 to /• -- 500 , we find that the wedge is oc- 
cupied by normal faults and subvertical faults (Figure 9c). 
The fault pattern in Figure 9c changes little, regardless of 
how pore fluid pressure ratios are assumed. This indicates 
that the geometry of the wedge, particularly the thrust dip, 
is an important factor in controlling the stress distribution 
in a thrust wedge. 

In Figures 5 to 9, different curved fault shapes and senses 
of slip are implied. They include planar and listtic, high- 
angle and low-angle, and normal and thrust faults. Such a 
variation in fault geometry has been observed in nature and 
may reflect the complex relationship between the mechanics 
of thrust wedges and boundary conditions. 

Hubbert-Rubey Toes 

The length of the Hubbert-Rubey toe is plotted against 
the dip angle of the basal thrust in Figure 10, in which A -- 
0.4, Ab = 0.9, a -- 3.5 ø, and k4 -- -1.5peg are assumed. 
A maximum length occurs at about /3 -- 10 ø. In general, 
the thicker the wedge is, the shorter its Hubbert-Rubey toe 
is for /3 > 10 o . Figure 10 also shows the importance of 
cohesive strength in controlling the length of the Hubbert- 
Rubey toe. 

APPLICATIONS 

The elastic wedge model described above may be applied 
to explain the formation of normal faults during the E1 
Asham thrust-type earthquake and the development of a 
Miocene north dipping normal fault system in the Higher 
Himalaya. 

Structural Development During 
the El Asham Earthquake 

The E1 Asham earthquake of October 10, 1980 (Ms 7.3), 
provided a wealth of geological and seismological data which 
have been used to aid our understanding of structural de- 
velopment of thrust-and-fold systems. Although the main 
event is clearly a thrust, widespread normal faults have been 
observed on the surface [Yielding el al., 19Sl; Philip and 
Meghraoui, 1983]. In addition to the normal faults, fault 
plane solutions of the aftershocks both above and below the 
inferred thrust surface show thrusting [Ouyed et ai., 1983]. 
These observations suggest that normal faulting and thrust- 
ing are coeval in the same thrust wedge during the earth- 
quake sequence. 

Development of the normal faults has been explained ei- 

ther as a consequence of flexural slip folding [Philip and 
Meghraoui, 1983] or anticlinal uplifts during motion along 
the underlying thrust [King and Vita-Finzi, 1981; Yield- 
ing et al., 1981] or as a complex deformational response 
of motion along fiat ramp thrust [Avouac et al., 1992]. 
Avouac el al. [1992] believe that folding itself cannot be 
the cause for the formation of all the observed normal faults, 
because the faults are found in places where no folds are 
developed. Considering that regional low-amplitude folds 
may not be observable, folding as a cause of normal faulting 
cannot be completely ruled out. The proposed fiat ramp ge- 
ometry for the thrust along which the main event occurred 
is an interesting alternative [Avouac el al., 1992]. How- 
ever, the aftershock pattern in the area strongly indicates 
that the fault is a relatively planar feature with its average 
dip angle between 40 ø and 50 ø (Figure 2) [Ouyed et al., 
1983; Nabelek, 1985]. The fault pattern predicted by the 
elastic wedge model is plotted in Figure 11 by using the dip 
angle/3 -- 45 o and the wedge leagth x0 -- 12 km. In this 
plot, pore fluid pressure ratios along the base and within the 
wedge are assumed to be A -- Ab -- 0.4, a uniform compres- 
sive stress of 100 MPa is applied (i.e., ks - - 100 MPa), and 
k4 - -1.5peg is assigned. We find that the entire thrust 
wedge except the wedge tip favors the formation of normal 
faults. The tip of the wedge is under compression because at 
the point (0, 0), •xx = ks - -lOOMPa. The prediction of 
thrusting near the tip of the thrust wedge and of extensive 
normal faulting away from the tip fits the observations well. 

North Dipping Normal Faults in the Higher Himalaya 

A north dipping normal fault system in the Higher 
(Greater) Himalaya was first reported in western literature 
by Burg et al. [1983] and Burg and Chen [1984]. Burch- 
fiel et al. [1992] mapped extensively to further establish the 
position of the fault system and its relationship to regional 
structures. The results of their mapping suggest that the 
fault system can be traced along strike for at least 700 km 
and possibly traverses the entire 2000-km length of the Hi- 
mMaya. The low-angle normal faulting probably initiated 
at 21 -4-1 Ma and may have lasted locally until as recently 
as about 11 Ma [Copeland et aL, 1988; Maluski et aL, 
1988; Hodges et al., 1991; Burchfiel et al., 1992]. Coeval 
with the normal faulting in the Higher Himalaya was the 
development of the Main Central Thrust (MCT), the in- 
verted metamorphic gradient in the footwall, and two-mica 
leucogranites in the hanging wall [Hubbard and Harrison, 
1989; Le Fort, 1981; Le Fort et al., 1987; Copeland etak, 
1990]. Initiation and development of the north dipping nor- 
mal fault system previously was attributed to gravity slid- 
ing [Berg and Chen, 1984], gravitational collapse [Burchfiel 
and ]•oyden, 1985], and southward directed ductile flow in 
the lower crust Jr in, 198•. Although any one of these pro- 
posed causes may have been partially or completely respon- 
sible for the formation of the normal faults, the temporal 
and spatial association of (1) thrusting along the MCT, (2) 
intrusion of leucogranites, and (3) low-angle normal faulting 
in the hanging wall of the MCT hints at a causal relationship 
among them. As shown in Figure 5, high pore fluid pressure 
along the basal thrust favors compression in a thrust wedge, 
whereas low pore fluid pressure favors extension. This result 
may explain the relatively short hfe of the normal faulting. 
As proposed by Le Fort [1981], thrusting along the MCT led 
to juxtaposition of the hot hanging wall rocks (the Tibetan 
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Fig. 9. Potential fault pattern in the region where the magnitude of deviatoric stress is greater than 50 MPa, 
• -- 0.4, •b -- 0.9, k4 -- -1.Sp,#, ks - -100 MPa, and x0 -- 100 km. The dash-dotted line is the contour line of 
rma• -- 50 MPa: (a) a -- 0.0 ø,/• -- 10 ø, (b) a- 15.0 ø,/•- 10 ø, (c) a - 0.0 ø,/• - 50 ø. 

slab) over the cold footwall rocks (Midland Formations). 
This process may have induced dehydration reactions, de- 
fiuidization, and devolatilization near the fault zone. As 
most of the fluids contributed to melting that formed the 
Himalayan leucogranites [Le Fort et al., 1987], the pore 
fluid pressure along the MCT was reduced rapidly owing to 
the fast release of fluid. This in turn could have led to the 

reduction of basal friction and the initiation of the Higher 
Himalayan normal faults. The termination of normal fault- 

ing may have been related to the establishment of high pore 
fluid pressure along the Main Boundary Thrust (MBT) due 
to subduction of the Siwalik sediments. High fluid activity 
along the MBT during the early Pliocene has been inferred 
by Copeland et al. [1991]. The MBT lies structurally below 
the M CT between the Lesser Himalaya and Sub-Himalaya 
and is younger (post-middle Miocene [Gansser, 1981]). Be- 
cause of smaller displacement along the MBT compared to 
the MCT on the basis of metamorphic grades juxtaposed by 
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Fig. 10. Relation between the length of the Hubbert-Rubey toe, L, and the dip ax•gle of the basal thrust /•.. 
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Fig. 11. Simulated fault pattern in the hanging wall of the 
E1 Asham thrust. Thrust dip /• -- 45 o , ,• -- ,•b -- 0.4, 
ks = --100 MPa, k4 -- --1.5peg, and c• -- 0 ø. The dash- 
dotted line is the contour line of rma • -- 50 MPa. 

the two faults, perhaps heat from the hanging wall of the 
MBT was not sufficient to cause extensive dehydration and 
defiuidization along and adjacent to the MBT. This may 

explain why no post-MBT leucogra•nites' and north'dipping 
normal faulting developed in the Higher Himalaya.. .'" 

. 

DISCUSSION AND CONCLUSIONS " , 

The boundary conditions in this study are similar, to those 
used in the Coulomb wedge model [Dahle. n, 1984]. However, 
the calculated stress distribution in elastic wedges is quite 
different from the Coulomb wedge model in that it .implies 
simultaneous normal and thrust faults in the 'same. thrust 

wedge and a listtic geom•'try for both thrust and normal 
faults. The feature common to the two models is that they 
both suggest basal friction as the first-order control on the. 
state of stress in thrust wedges. This is in strong cohtrast, 
to the inference of Platt [1986] that the topographic' slop& 
decides whether the wedge is under extehsion or compreg- 
sion. Given that temperature, pressure; stroh rate, an'd 
magnitude of stress vary by several orders'of magnitude 'in 
the lithosphere; that the sizes of structures in consideration 
commonly differ drastically; and that the abundance of frac-. 
tures/joints in the crust changes from place to pla'c•, 'it is 
impossible to use a single constitutive model' to describe the 
mechanical behavior of all thrust wedges'. 

The model presented in this paper i• ai)plicable to'5oth 
thick- and thin-skinned thrust wedges. It predicts that (1) 
lower friction along the base of thrust' wedges'can 'l•ad to 
dominantly horizontal compression in the wedge, whereas 
higher friction can lead to dominantly horizontal extension'; 
(2) a long thrust wedge (>100 km) may have thrusts in 
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its lower portion and normal faults in its upper portion, 
even though a moderate to high compressive horizontal nor- 
mal stress (100 MPa) is applied, whereas a short thrust 
wedge (< 10 km) can be entirely compressional under the 
same boundary conditions; (3) although an increase in to- 
pographic slope promotes horizontal extension, the limited 
range of its variation on a regional scale determines that 
it is less important than basal friction in producing exten- 
sion; and (4) an increase in the vertical gradient of horizon- 
tal normal stress favors the development of normal faults 
in thrust wedges. The model is also used to calculate the 
length of the Hubbert-Rubey thrust toe, the unfractured, 
frontal portion of a thrust wedge. It shows that with the 
same boundary conditions, a narrower wedge in general has 
a longer Hubbert-Rubey thrust toe. The model is applied 
to explain the initiation of the Miocene normal fault system 
in the High Himalaya as a consequence of a rapid release of 
pore fluid pressure along the MCT during dewatering of sed- 
iments in the footwall and development of two-mica granites 
in the hanging wall. Termination of the north dipping nor- 
mal faulting may have been related to initiation of the MBT 
along which high pore fluid pressure existed, favoring thrust 
wedge compression. The model also predicts the occurrence 
of normal faults associated with the E1 Asham thrust-type 
earthquake. 
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